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Onset of polymer entanglement
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Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 15 January 1998; revised manuscript received 11 March 1998!

We have developed a theory of polymer entanglement using an extended Cahn-Hilliard functional with two
extra terms. One is a nonlocal attractive term, operating over mesoscales, which is interpreted as giving rise to
entanglement, and the other is a local repulsive term indicative of excluded volume interactions. This func-
tional can be derived using notions from gauge theory. We go beyond the Gaussian approximation, to the
one-loop level, to show that the system exhibits a crossover to a state of entanglement as the average chain
length between points of entanglement decreases. This crossover is marked bycritical slowing down, as the
effective diffusion constant goes to zero. We have also computed the tensile modulus of the system, and we
find a corresponding crossover to a regime of high modulus. The single parameter in our theory is obtained by
fitting to available experimental data on polystyrene melts of various chain lengths. Extrapolation of this fit
yields a model for the crossover to entanglement. The need for additional experiments detailing the crossover
to the entangled state is pointed out.@S1063-651X~98!14809-2#

PACS number~s!: 61.41.1e, 83.10.Nn
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I. INTRODUCTION

While it has long been known that entanglement in h
mopolymers has an important effect on its strength, a th
oughly satisfactory theory of polymer entanglement is sti
topic of current research. The classic experimental work
Moore and Watson@1# showed that the bulk modulus o
cross-linked natural rubbers depends inversely on the a
age chain length (Nc) between cross-links in the system, a
that end corrections become negligible as the total ave
molecular weightm gets very large. They pointed out th
analogy between chemical cross-linking and physical
tanglement. Thus their work applies in a qualitative sens
entangled systems as well. Their work extended the ea
pioneering work of Flory and co-workers@2,3#.

Edwards developed the tube theory of the effect of
tanglement on elastic moduli of homopolymers using
Genne’s idea of reptation@3#. This theory showed how en
tanglement enhances the tensile modulus of a homopoly
He also developed a more detailed model of entangled
polymers using notions from knot theory@4#. The basic idea
behind this theory is an analogy between certain mathem
cal invariants, describing intertwined loops, and magne
fields induced in wires by current-carrying loops. Prager a
Frisch@5# worked on this notion as well, as did Koniaris an
Muthukumar@6#.

More recently, interest has turned towards compu
simulations of polymer networks, involving various levels
molecular detail, to understand the effect of entanglemen
the strength of homopolymers. As examples, we mention
work of Termoniaet al. @7# and Biceranoet al. @8#, who use
phenomenological models of polymer networks to stu
their viscoelastic properties. Comparison with experimen
data shows a varying degree of success, depending on
particular system studied. Holtzlet al. @9# use the more basic
fluctuating bond theory to model a network of polyethyle
strands to show that entanglement leads to nonaffine
placements under large tensile strains.

In an earlier paper@10# we developed a gauge theory
PRE 581063-651X/98/58~3!/3469~9!/$15.00
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self-assembly and utilized renormalization group ideas
study the onset of self-assembly in diblock copolymers.
this paper we shall pursue a similar continuum approach
understand entanglement.

Intuitively, one can see that entanglement could be
scribed by assuming two extra terms in the Cahn-Hillia
functional, @11# one of which is a nonlocal attractive term
that gives rise to entanglement and the other is a soft-c
local repulsive term that arises from the fact that the stra
cannot cut across each other. We connect the parameters
appear in our theory to the underlying chain parameters w
a simple model. We have shown~see Appendix! how such a
functional can be derived naturally using notions from gau
theory.

The results derived from our continuum formulation w
be seen to be reminiscent of the chain-theory approache
Kassalis and Noolandi@12# for flexible polymer networks,
and that of Kroy and Frey@13# for semiflexible networks.
They utilized a mean-field approach to locate the transit
to the state of entanglement. Our theory is also somew
similar to the paper of Castillo and Goldbart@14#, who use a
f3 field theory, coupled to the replica trick~in the mean-field
approximation! of Deam and Edwards@15#, to study the vul-
canization transition.

We shall utilize a field theoretic approach and go beyo
the Gaussian approximation in this paper to show that
onset of the state of entanglement is a crossover phen
enon, rather than a pure phase transition, in that the effec
diffusion constant goes to zero at the transition point, but
correlation length and the structure factor do not diverge
physical reason that fluctuations become important near
onset of the state of entanglement is that the average c
length between points of entanglement gets smaller, whil
a vulcanized polymer, the cross-links make the system
creasingly stiff. This underscores a difference between v
canization and entanglement: An entangled network of po
mers is more dynamic than a vulcanized network. The me
field approximation is expected to be correct@16# for the
vulcanization transition.
3469 © 1998 The American Physical Society
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3470 PRE 58SHIRISH M. CHITANVIS
We have also computed the tensile modulus of the s
tem. Corresponding to the critical slowing down discuss
above, we find a crossover in the modulus to a regime
high values. Fits to available experimental data show h
the single parameter in our theory can be parametrize
terms of the molecular weight of the system. Extrapolat
of the parametrization we have provided in this paper d
plays the crossover to the entangled state. The need for
ther experiments detailing this crossover is pointed out.

II. A FIELD THEORY OF ENTANGLEMENT

The continuum mesoscale approach adopted in this p
assumes that we have performed some spatial averagin
our polymeric system, so that theorder parameteris the
local concentration of the polymers. Our mesoscopic the
of entanglement in polymers is based on the intuitive not
that physical entanglement can be captured by a nonl
attraction between the polymers, which causes them to
main in proximity. There must be a balancing repulsive lo
energy term that says that the polymers cannot cut ac
each other. The starting point of our mesoscale theory is
internal energy functional that is quadratic in the gradient
the local number concentration. For the moment, we w
consider isolated systems, so that the quantity that is c
served is the internal energy@17#. We will shortly consider
entropy effects as well. Consider the following form for th
energy functional:

bU05bE u0„c~s!…d3s, ~1!

b5
1

kT
, ~2!

bu0„c~s!…5S g

2D ]c~s!

]si

]c~s!

]si
, ~3!

where repeated indices are summed over,s is a dimension-
less coordinate variable,k is Boltzmann’s constant,T is the
temperature, andc is the number concentration of the spec
The local concentrationc is normalized by dividing by some
characteristic inverse volume. The constantg is analogous to
a dimensionless diffusion constant. Such energy function
have been considered over many years as contributing to
total internal energy of both unary and binary mixtures@11#.
We will use this form as our starting point to suggest a m
complete energy functional:

bUeff5bU01S a2

2 D E d3s c~s!c~s!

2S g

2p D E d3sE d3s8 c~s!
exp ~2dus2s8u!

us2s8u
c~s8!,

~4!

where a2,g,d are positive constants. The local repulsi
term is indicative of the fact that polymers cannot cut acr
each other. This is, in effect, a soft-core repulsion term,
the softness arises because we are studying a homopol
network at a mesoscale, where polymers may pass by
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other without actually cutting across each other. The non
cal attractive term gives rise to entanglement since it cau
portions of the network within the screening distance 1/d to
be attracted to each other. Equation~4! is the basic statemen
of our theory. Note that the two terms we just discussed h
signs that are opposite those of corresponding terms in th
ries of self-assembly@10#. The nonlocal attractive term in
vokes the notion that entanglement of polymers must lea
knotty configurations@19#. This attractive term can be see
intuitively to lead to the notion of trapping and, as such,
slightly similar in the literature to treatments of entangleme
that use Arrhenius-like rate theories to provide for the esc
of polymers from local entangled arrangements.

In what follows, we shall setg5a4 and d25A2a with
a25g2/2. A strong motivation for this choice of paramete
is provided in the Appendix, where we use notions fro
gauge theory to derive Eq.~4!, with the parameters having
the forms given above. Another explanation for such
choice is as follows. With our choices for the paramete
Ueff in momentum space may be written as

Ueff5E d3k

~2p!3ĉ* ~k!@2A2ak2

2A2ak2/~11A2k2/a!# ĉ~k!, ~5!

where the carats indicate a Fourier transform. Thus we
that the choices made for the parameters are equivalen
generalizing the diffusion constantg[A2a→A2a@111/(1
1A2k2/a)#, i.e., a nonlocal diffusion constant is obtaine
If we now extremize the functional, the Euler-Lagran
equations can be written in conservative form as

¹W • IW~sW !50,

IW~sW !5¹W E d3k

~2p!3exp ~ ikW•sW !@111/~11A2k2/a!# ĉ~k!,

~6!

whereIW(sW) can be interpreted in the conventional manner
a mass current. The divergence-free nature of this cur
makes it clear that with our choice of parameters, our int
nal energy functional preserves number conservation. Th
quite appropriate, since the internal energy is the quan
that is conserved for isolated systems. For an arbitrary ch
of parameters, the Euler-Lagrange equations have the f
¹W • IW8(sW)5source/sink terms, indicating that number cons
vation can be a problem.

While our choice of parameters may appear to be ove
restrictive, it turns out to be sufficiently rich to provide
description of the onset of entanglement in polymers. W
will not explore more general sets of parameters in this
per.

Before we can compare our theory with experimen
data, we need to consider the fact that our system is
really isolated and may be in contact with an energy res
voir, perhaps as it is acted on by mechanical forces in a st
experiment. For a system in contact with an energy reserv
the quantity that is conserved is the Helmholtz free ene
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PRE 58 3471ONSET OF POLYMER ENTANGLEMENT
@17# A5Ueff2ST, whereS is the entropy of the system. Th
entropy of our system will be approximated in the conve
tional manner@18#:

2
S

k
5E d3s c~s! ln @c~s!#. ~7!

Note that we have ignored a term in the above expres
that is linear in the normalized concentration field. This te
can be absorbed into the definition of the usual Lagra
multiplier constraint for number conservation. This ad
tional constraint is necessary, over and above the cons
ations that led to Eq.~5!, because we are now considering t
Helmholtz free energy rather than just the internal energy
the homogeneous mean-field approximation, the chem
potential can be easily shown to be zero. We shall utilize
approximation to facilitate computations. This entropy te
provides the free energy with a single minimum. To furth
ease computations, we shall expandc ln (c) in a power series
about the characteristic inverse volumel 23 ~51 in our di-
mensionless units!, retaining terms up to fourth order:

~11c! ln ~11c!'c1
c2

2
2

c3

6
1

c4

12
. ~8!

This expansion yields one minimum, just as the exact
pression for the entropy. Consequently, we do not expect
system to display a phase transition, but rather a cross
from an unentangled state to a state of entanglement. Fin
we note that in our present theory, entropy yields the cru
nonlinear terms, which will describe the crossover to a s
of entanglement, in contrast to our gauge theory of s
assembly@10# where entropy did not play a dominant role

We define the two-point Green’s function as usual via

S~xW ,xW8!5 limJ→0@d2/dJ~xW !dJ~xW8!#Q@J#,

where

Q@J#5E Dcu~11c! exp F2b~Ueff2ST!

2E d3sJ~sW !c~sW !G ,
whereu(11c) is a step function that indicates a restrictio
to physically acceptable values of the concentration. In pr
tice, we shall be restricting our attention to small deviatio
of c from its average, so that the step function is implici
accounted for during calculations. In the quadratic appro
mation, the structure factor is

Ŝ0~k!5
1

11a8k21a82k2/~112k2/a8!
, ~9!

wherea85A2a. Equation~9! displays a peak at the origin
as one might expect from the fact that entanglement cre
blobs that are distributed at random within the system. T
width of the peak indicates an inverse of the correlat
length between the blobs. With this physical interpretati
Aa is a measure of the distance between concentration
tuations~i.e., between points of entanglement!. The decay of
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Ŝ0(k) is affected by the value ofa. As a decreases, the
structure factor looks more diffuse. Thus, a decrease ina
signifies a shift to a state of higher entanglement as the c
centration of entanglement points increases.

Our results can be understood compactly in terms of
parametera or, equivalently,g, which may be identified
with the self-diffusion coefficient of a polymer. As dictate
by the discussion in Sec. IV of the paper, where by comp
son with data on various polymers, we find thata'a0

1a1 Mn1a2 Mn
2 , where Mn is the average molecula

weight of the system. The constants in this expression
such thata(Mn) decreases asMn increases. Let us now
make some more definitions, viz,N is the average chain
length, the average chain density isc̃5rNAvogadro/(m0N),
Ne is the average chain length between consecutive point
entanglement, the entangled chain number densityce
5rNAvogadro/(m0Ne), and the monomer number densityc0
5rNAvogadro/m0 , with r as the mass density of polyme
NAvogadro the Avogadro’s number, andm0 the molecular
weight of the monomer.l is the length scale in our theor
and we shall take it to bel 5l c̃21/3, wherel is a parameter
taken to be (2/3)1/3 since it leads to an expression for th
tensile modulus in the Gaussian approximation that agr
with the standard Wall theory result in the limit of sho
~entangled! states. We shall use the lengthł to scale all other
lengths in the system. These ideas are slightly similar
Stillinger’s in another context@20,21#. By choosing our
length scale in this fashion, it allows us to see how high
order corrections beyond the Gaussian approximation lea
an enhanced elastic modulus. In this manner we have
tempted to relate our theory in an intimate fashion to
notion of entanglement.

III. BEYOND THE GAUSSIAN APPROXIMATION

We shall now use diagrammatic methods to go beyo
the Gaussian approximation to the structure function
scribed at the end of the previous section. The reason is t
able to describe the crossover to a state of entanglemen
discussed in the previous section, the onset of entanglem
is not a phase transition, but simply a crossover.

Figures 1~a! and 1~b! show the basic vertices in ou
theory. The figure captions describe the Feynman rules
go with these vertices. We shall compute only the first no

FIG. 1. ~a! is a pictorial representation of the cubic term inA.
Each leg corresponds to a factor of the fieldc. The intersection of
the three legs symbolizes a factor of the coupling constang
51/6. ~b! is a pictorial representation of the quartic term inA. A
factor of 21/12 is to be inserted at the intersection.
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3472 PRE 58SHIRISH M. CHITANVIS
vanishing terms that arise from each of these vertices.
first order contribution of the cubic term is zero, which fo
lows from symmetry considerations. We have to go to
second order in the cubic term to obtain atadpolediagram,
which is nonvanishing as shown in Fig. 2~a!. It serves to
renormalize the correlation function in the long waveleng
limit. Figure 2~b! is the othersetting sundiagram, which
comes from the second order contribution of the cubic te
It may be expanded in powers of its argumentk. The term
proportional tok2 helps to renormalize thediffusionconstant
g, and serves to diminish it, as one would expect entan
ment to. Figure 3 shows the conventionalbubble diagram
coming from first order perturbation theory with the quar
term. It serves to renormalize the correlation function in
long wavelength limit.

In order to render the integrals in our theory finite in thr
dimensions, we shall use the following regularizati
scheme. We shall perform an expansion of the denomin
of the Gaussian structure factor in powers ofk. We shall
retain terms up toO(k6). This is essentially an expansion
inverse powers ofa. This expansion yields the requisit
higher order terms in the denominators of the Green’s fu
tion to render our integrals finite, while ensuring thatŜ0(k)
.0. This method has the advantage of retaining the cor
long-wavelength behavior, at the expense of high momen
behavior. This is acceptable since we do not expect
theory to be correct at small wavelengths in any eve
Shortly we shall compare our method with the conventio
method of renormalization via counterterms. Our sing
particle Green’s function in the Gaussian approximation
now taken to be

FIG. 2. ~a! represents thetadpolediagram, which is crucial in
our calculations.~b! represents thesetting sundiagram. Both~a!
and ~b! are second order contributions to the correlation funct
coming from the cubic interaction term; the first order correctio
are null.

FIG. 3. This figure represents the one-loop~bubble! contribution
from the quartic interaction term inA.
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Ŝ0~k!5
1

112a8k222k41k6/~2a8!
. ~10!

With this definition, the net contribution from diagram
shown in Figs. 2~a! and 3 is

S2a13~a!52S 3

4D S0~0!. ~11!

Figure 2~b! yields a k-dependent contribution to the sel
energy:

S2b~kW !5S 1

4D E d3k8

~2p!3
Ŝ0~k8!Ŝ0~ ukW82kW u!

'da1dgk21O~k4!, ~12!

where

da~a!'
1

128 21/4pa3/2
,

dg~a!'S 1

256pa1/2D S 5

23/4a2 2A2D , ~13!

where the integrals were performed by approximating
denominator of the Gaussian Green’s function by terms u
O(k2), as this suffices to guarantee convergence of the i
grals, so that there is no sensitivity to the higher order ter
neglected. We find that the contribution from Eq.~11! is
extremely small compared toda from Eq. ~12!. This is ba-
sically what happens in the usual renormalization sche
where one eliminates terms such asS0(0) @when Eq.~9! is
used to perform the calculations# using appropriate counter
terms in the energy functional. In fact, in this scheme,Ŝ0(k)
decays quadratically withk, and the considerations used
obtain Eq.~13! automatically obtain.

With these expressions, we see that the renormali
valuegR5g2dg of the diffusion constant decreases asa is
decreased. As is discussed in Sec. II, the nonlocal attrac
term in our free energy was identified with the formation
knotty configurations, or clusters@19#. We will therefore
identify gR with the dynamics of such clusters. Cluster d
namics has been recently observed using state-of-the
techniques by Stepanek and Brown@19#. gR is zero neara
50.18. Note thata decreases as we increaseN, the average
chain length. We thus see that as entanglement increase
effective diffusion constant decreases, analogous tocritical
slowing down. We are not aware of explicit experimen
observations regarding the dynamics of clusters, with wh
gR has been identified, near the crossover threshold. T
effect is similar to the considerations of Kassalis and No
andi @12#, Kroy and Frey@13#, and Broderixet al. @22#, who
study the vulcanization transition in the mean-field appro
mation and find the diffusion constant going to zero as
vulcanization transition is approached. They point out t
this result agrees with experimental results. Given the a
ogy between vulcanization~chemical cross-linking! and
physical entanglement, we believe this result should be
perimentally observable in entangled systems as well. B

n
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PRE 58 3473ONSET OF POLYMER ENTANGLEMENT
derixet al.obtainedgR→0 linearly with the average concen
tration. We have obtained a more complicated depende
on the concentration. We find thata'0.18 when the renor-
malized diffusion constant goes to zero. One could estim
a using results from Sec. IV on the tensile modulus of po
mers and experimental values for polymeric elastic mod
and then obtain a value for the criticalN* at which the
effective diffusion constant goes to zero.

The origin of dg.0 can be traced back to the nonloc
attractive term inUeff , defined in Eq.~4!. This nonlocal
attractive term, which we interpreted as giving rise to e
tanglement, is responsible for a physical signature of the
set of entanglement, withgR→0.

IV. TENSILE MODULUS

It is well known that the Wall theory result for the tensi
modulus, while yielding the correct trend, does not ag
with experimental data on moduli by a large factor. E
wards’s application of de Gennes’ reptation model@3# pro-
vides an enhancement factor over Kuhn’s result, and sh
conceptually how entanglement leads to an increase in
stiffness of the homopolymer system. We will show in th
section how to obtain a similar result in our continuum tre
ment. More importantly, we will show we can go furthe
and describe a crossover, as the mean chain length bet
entanglements is decreased, to a regime where the te
modulus, instead of remaining fairly constant, begins to
crease extremely rapidly as a function of decreasingNe . The
reptation model is unable to accomplish this@4#, since it
assumes that the system is already in the entangled state
does not account for interchain interactions, beyond ass
ing a preformed tube.

The Helmholtz free energy in the Gaussian approximat
is given by@23,24#

FG52
3

2
kTVc̃Ŝ0~k50!52

3

2
kTVc̃E d3x S0~x!.

~14!

We may represent a strained state of the system by
transformationxW→xW85xW1uW (xW ) in the above equation. Thi
is possible becauseS(xW ) in the above equation represents t
density-density correlation function̂c(rW)c(rW2xW )&, so that
when the system is strained,c(rW2xW ) in our theory shifts to
c(rW82xW8), where rW85rW1uW (rW). For the case of homoge
neous deformation, we shall takeuW (xW )5 eJ•xW , wheree is the
strain tensor. The strain is assumed to be volume preserv
so thatd3x5d3x8. Our approach is similar to that of Castill
and Goldbart@14#. It is now easy to show, using a Taylo
series expansion, that the change in the pressureP5
2(]F/]V)T,N is

DPG'
3

2
kTc̃Ŝ0~k50!eabegdDabgd1O~ eJ4!,

Dabgd5~dabdgd1dagdbd!, ~15!

where the subscriptG denotes the Gaussian approximatio
As needed, we can consider the expansion of free energ
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include higher orders of the strain tensor@25#. DPG is a
measure of the change per unit volume of the energy of
system under strain. Analogous to a simple harmonic os
lator, the force tensor that constrains the system from un

going a straineJ is given by23kTc̃Ŝ0(k50)eJ:DJJ . Thus, the
stresssJ required to produce this strain is

~16!

One may now readily write down the tensile modulus as

YG53kTc̃. ~17!

This is identical to the well-known Wall theory result ob
tained in the limit of short~unentangled! chains. And its
origin is purely entropic. Our goal is to go beyond this resu
and to do that, we shalldress the bare propagatorŜ0(k)
using the diagrams shown in Figs. 2 and 3. This immedia
leads to the renormalized resultYR :

YR~a!5H 3kTc̃ŜR~k50!

3kTc̃F 1

12S2a13~a!2da~a!G . ~18!

The first of these equations is similar to the connection m
between the structure factor in the long-wavelength limit a
the bulk modulus by Kirkwood and Goldberg@26#.

The result of plotting the entanglement factor Z
5YR /YG21 as a function ofa(N) is presented in Fig. 4
We see that the enhancement factor, which is fairly cons
abovea50.2008, begins to increase dramatically below t
value ofa50.2008. As was discussed in Sec. II, decreas
a is equivalent to increasingN, the average number of link
in a polymer. And increasingN is associated with increasin
entanglement.

To see the connection between our approach and the
derlying chain parameters better, we identify the prefac
@Z(a)11# by multiplying the Wall theory result with the
enhancement obtained within the reptation model@4#, i.e.,
Z(a)11[(Nb2/a2), whereb is the monomer length, anda
is the diameter of the tube in the reptation model. This id
tification gives us a relation betweena and the parameters o
reptation theory. It also gives us a relation between
theory and the underlying chain parameters, such asN, the
average number of links, andNe , the average number o
links between successive points of entanglement, viz,Ne

21

5(b2/a2). In fact, we can provide such an analytic, appro
mate relation in the following manner. Based on numeri
estimates ofS0(0), we findthat in the highly entangled state
uda(a)u@uS2a13(a)u. Then, using Eq.~13!, we immedi-
ately obtain

a~Ne ,N!'k~12Ne /N!22/3,

k5S 1

128 21/4 p D 2/3

. ~19!

It should be noted that this particular scaling relation E
~19! holds only in the limit of highly entangled states. Whi
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FIG. 4. This is a plot ofZ5YR /YG21 as a function ofa. Notice that the factor is virtually constant abovea50.20, followed by a
dramatic increase below this value ofa. Approximations employed in the calculation cause the entanglement factor to divergea
'0.01. Remember, decreasinga corresponds to increasing entanglement.
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we have denoted the explicit dependence onNe andN sepa-
rately, it should be noted thatNe itself depends on the chai
lengthN. More generally, the advantage of our theory is th
the enhancement factor@Z„a(N)…11# can change continu
ously from a value of unity in the unentangled state, to
fairly large number as the system becomes increasingly
tangled. As discussed earlier, the reptation model on
other hand presupposes the formation of tube constr
caused by polymer chains surrounding any given chain.
such it applies only in the highly entangled state.

We introduced our theory in Sec. II in a phenomenolo
cal fashion, and so the best way to establish the validity
our theory is to compare the results of our theory with e
periment, the connection with the underlying chain para
eters@Eq. ~19!# notwithstanding. However, we are not awa
of experimental data on the elastic properties of entang
polymers detailing in a precise manner the crossover to
entangled state.

Nevertheless, we were able to find an experimental pa
by Onogi and co-workers@27,28#, which provides systematic
viscoelastic data on amorphous polystyrene in the melt s
over a wide range of frequencies and molecular weights~and
having a low degree of polydispersity!. We were able to
obtain static shear moduli from the plateau moduli given
this paper. The conventional assumption of incompressib
then says that Young’s modulus is three times the size of
shear modulus. Armed with these data, we were able to

TABLE I. Fitted values ofa obtained in comparison with ex
perimental data from Onogiet al. @27# on amorphous polystyren
melts at 160 °C. Young’s modulus is denoted byY.

Molecular weight Yexpt (c) a ~fitted!

581 000 93 0.0166
513 000 84 0.0167
351 000 66 0.0171
275 000 65 0.0173
215 000 62 0.0177
167 000 56 0.0184
113 000 106 0.0179
t
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tain a parametrization ofa as function of the molecula
weightMn(5m0N) ~see Table I and Fig. 5!. This parametri-
zation is consistent with the stress-strain data provided
Biceranoet al. @8#. This parametrization is also consiste
with Eq. ~19!. Equation~19! implies that for very large mo-
lecular weights,a→k'0.016 35. From Fig. 5, we see suc
values fora occurring at the high end of the range of m
lecular weights. The parametrization depicted in Fig. 5 m
be thought of as a power series expansion of Eq.~19!.

The crossover between the unentangled state and the
tangled state appears to take place betweenMn'113 000
and Mn'60 000 as the plateau in the storage moduli m
surements disappears somewhere between these two v
of the molecular weights@27#. Unfortunately, this crossove
is not described well by these data, as measurements in
crossover region are unavailable. This could well be due
the critical slowing down that our theory predicts will occ
during the crossover~see Sec. III!. As can be seen from

FIG. 5. These dots are the values ofa required to achieve agree
ment with experimental values of moduli of amorphous polystyre
melts for a range ofMn . The solid line indicates a least squares
obtained usinga(Mn)5a01a1Mn1a2Mn

2 , with a050.0189, and
a1526.1831029, anda253.89310215. Caution should be exer
cised in using this expression to estimatea too far from the range in
which the fit was made.
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Table I and Fig. 5, the data develops noise at the low en
the range of molecular weights. And this is consistent w
the prediction of critical slowing down, since the syste
takes very long to settle into a metastable state. Since
have a crossover phenomenon, it is difficult to pinpoin
single value ofMn at which the transition to the entangle
state occurs. But based on Fig. 6, in which the logarithm
the enhancement factor has been plotted as a functio
Mn , we see that it starts to become appreciable~@1! in the
neighborhood ofMn;50 000. The theory thus predicts th
it is in this neighborhood that the crossover takes place
would be very interesting to see more experiments p
formed in the future, say for amorphous polystyrene, w
Mn in the range just discussed, to see if the path of
crossover agrees with that shown in Fig. 6. It is even m
important to do such experiments to ascertain if the criti
slowing down predicted in Sec. III does indeed occur.

V. CONCLUSIONS

We postulated an extension of the Cahn-Hilliard fun
tional to describe entanglement in polymers. We exten
the Cahn-Hilliard functional with two terms. One is an a
tractive nonlocal term that describes the effect of entan
ment, and the other is a local repulsive term indicative
excluded volume interactions. We showed in the Appen
how this extended functional can be derived using noti
from gauge theory. Using field theoretic techniques to
beyond the Gaussian approximation, we showed that the
set of entanglement is a crossover phenomenon, signale
the effective diffusion constant going to zero. We develop
a simple model to connect the single parameter in our the
with the parameters of the underlying chains by a comp
son with available experimental data on amorphous poly
rene melts. A reasonable estimate for the critical partial ch
concentration at which this crossover occurs was obtain
While this is consistent with available data, further expe
ments to determine the details of this crossover were s
gested, especially to ascertain if the critical slowing do
predicted in this paper does indeed occur.

FIG. 6. Plot of log@Z# as a function of the molecular weigh
Mn . Notice thatZ begins to attain nontrivial values aboveMn

;53104. The curve indicates the path of the crossover from
unentangled state to an entangled state.
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APPENDIX

In this appendix, we shall show how to derive Eq.~4!,
along with the choice of parameters made in Sec. II, us
notions from gauge theory. Let us start with

bu0„c~s!…5S g

2D ]c~s!

]si

]c~s!

]si
, ~A1!

where the variables have been defined in Sec. II. We will
this form as our starting point to generate a more comp
energy functional using gauge invariance.

From Eq.~A1! we see thatu0 is invariant under global
translations ofc(sW), i.e. underc(sW)→c(sW)1h, whereh is a
constant. And the appropriate group to consider isT1 . The
physical origin of this group can be traced back to the f
that the quadratic~positive, semi-definite! form of the energy
density is dictated by expanding the internal energy aroun
minimum, in a Landau-like fashion. Physicality ofT1 trans-
formations demands thatc81ce.0, wherec8 denotes the
deviation of the specie’s concentration from its average,
that number conservation is guaranteed. These physical
straints will be incorporated into the evaluation of the pa
tion function,after gaugingU0 , in a manner similar to ap-
plying gauge constraints in quantum field theory~QFT!.

Our physical motivation for seeking local gauge inva
ance underT1 is the same as that of Yang and Mills@29#, and
in quantum electrodynamics, where one observes the inv
ance of the noninteracting Lagrangian under certain glo
transformations. One then demands covariance of the th
when these symmetry operations arelocal, i.e., when the
transformations are space-time dependent. A reason for
as given by Yang and Mills, is that one can now freely i
terchange between the fields as one moves through spac
time, while leaving the physics covariant. It is important
note that gauge theory in QFT isnot a result of the fact that
the phase of the field is not measurable. In fact, Aharon
and Bohm showed many years ago that the phase in quan
mechanics is indeed observable. Local transformations un
T1 generate concentration fluctuations that arise from
tanglement.

Following Yang and Mills@29#, local gauge invariance o
u0 underT1 motivates us to define new fieldsb, which have
invariance properties appropriate toT1 . We define a covari-
ant derivative]/(]si)→@]/(]si)1qtbi #, wheret5]/(]c) is
the generator ofT1 , q is a ‘‘charge,’’ or equivalently, a
coupling constant, and theb fields are analogs of the mag
netic vector potential in electrodynamics. In our previo
theory of self-assembly@10#, gauge fields arose from th
underlying covalent bonds between the two species in

n
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system. In the present case, in which we wish to desc
entanglement, the gauge fields are to be thought of as ar
purely from statistical considerations alone. On the ot
hand, chemical cross-linking would provide a physical orig
for theb fields in vulcanized systems. The energy function
for theb fields is defined by Yang and Mills, via the minima
prescription. With this, our original internal energy density
transformed into

bu0→bu5bu01buint1buYM , ~A2!

whereuint refers to the interaction energy density, anduYM is
the energy density associated with the Yang-Millsb fields
alone. Equivalently, we may define the total energy functi
als associated with these energy densities:

bU0→bU5bU01bU int1bUYM ,

where

buint5JW~c!•bW ~s!1 f bW ~s!•bW ~s!, ~A3!

with

JW~c!5gq¹W c, ~A4!

f 5S gq2

2 D . ~A5!

We need one more definition for completeness:

buY M5S 1

4D S ]bi

]sj
2

]bj

]si
D S ]bi

]sj
2

]bj

]si
D[
BW 2

4
. ~A6!

This equation can be cast into the following form:

buY M52S 1

2Dbi¹
2bi . ~A7!

Equation~A7! is obtained via an integration by parts,
the transverse gauge. Since we are dealing with an Abe
gauge theory, it is permissible to insert this transverse ga
manually, without resorting to the formal machinery of Fa
deev and Popov. Again using the transverse gauge and
grating by parts, it is clear that

E d3s ¹W c~sW !•bW ~sW !52E d3s c~sW !@¹W •bW ~sW !#

[05 i E d3s ¹W c~sW !•bW ~sW !. ~A8!

It is this crucial identity that allows us to get the precise fo
for Eq. ~4!, which we motivated in Sec. II using an intuitiv
approach. It is the nature of theT1 group that permits this
manipulation to go through successfully. In our earlier pa
@10#, where we used theSO(2) group, such a manipulatio
would not have availed us any advantage.

Note that we are utilizing a nonrelativistic version of th
Yang-Mills procedure, since we are only concerned w
time-independent problems. Furthermore, since we are
cerned with translations inT1 , there is only a single genera
e
ng
r

l

-

an
ge
-
te-

r

n-

tor to contend with, so that the resulting functional is on
quadratic and not quartic in theb fields.

It is important to emphasize that the usual application
the Yang-Mills procedure in QFT implies the existence
fundamental interactions. In our case, we are applying
principle of local gauge invariance at themesoscale. Conse-
quently, we do not expect to discover any new fundamen
interactions by using gauge invariance. Rather, we inter
the newb fields as yielding correlations between the conce
tration fields. These correlations can also be thought o
effective interactions, which arise at the mesoscale from
underlying electrostatic interactions between molecules.

The partition function we need to evaluate is now

Q85E Dc u~c! )
k51,3

Dbk exp2b~U01U int1UYM !.

~A9!

Equation~A9! is a functional integral, where the step fun
tions denoted byu imply that we must restrict integration t
positive semidefinite values of the fields. Since theb fields
appear only quadratically in the above functional, it
straightforward to integrate over them and obtain an eff
tive internal energy functional involving onlyc, upon using
Eq. ~A8!. The result is

bUeff5bU01bDUeff

5bU01
1

4E d3sE d3s8 Ji„c~s!…

3S 1

f 21/2¹2D
s,s8

Ji„c~s8!…. ~A10!

Note that in doing so, we have ignored an overall triv
normalization constant that appears in the evaluation of
partition functionQ8. This is permissible, since this facto
cancels during the evaluation of averages of observa
quantities.

To reveal the physics in this effective functional, we pe
form some straightforward algebra to write our result as

bUeff5bU01S a2

2 D E d3s c~s!c~s!2S a4

2p D
3E d3sE d3s8 c~s!

exp~2A2a2/gus2s8u!
us2s8u

c~s8!,

~A11!

wherea25g2q2/2 ~we shall use units in which q51!. Note
that Ueff is quadratic, the generator ofT1 making sure that
higher order terms do not appear in our functional. Equat
~A11! is one of the main results of our paper, and provide
deeper motivation for the model developed in Sec. II
intuitive grounds. As discussed in section II, the form of E
~A11! guarantees number conservation. Equation~A11!
shows that entanglement may be understood in the conte
a mesoscopic gauge theory. Note that the two terms we
discussed have signs opposite those of corresponding t
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in theories of self-assembly@10#. We thus see that usingT1
instead ofSO(2) in the previous theory@10# has led to a
qualitatively different theory. Finally, this approach provid
an alternative gauge theory of polymer entanglement t
the one given by Brereton@30#. In this paper, Brereton work
s

tt.

.
o

n

explicitly with entangled strands of polymers and provide
static theory that yields, e.g., a renormalized expression
the radius of gyration. It would be interesting to see ho
Brereton’s theory could be generalized to include dynam
as well.
tt.
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