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We have developed a theory of polymer entanglement using an extended Cahn-Hilliard functional with two
extra terms. One is a nonlocal attractive term, operating over mesoscales, which is interpreted as giving rise to
entanglement, and the other is a local repulsive term indicative of excluded volume interactions. This func-
tional can be derived using notions from gauge theory. We go beyond the Gaussian approximation, to the
one-loop level, to show that the system exhibits a crossover to a state of entanglement as the average chain
length between points of entanglement decreases. This crossover is marketicay slowing down, as the
effective diffusion constant goes to zero. We have also computed the tensile modulus of the system, and we
find a corresponding crossover to a regime of high modulus. The single parameter in our theory is obtained by
fitting to available experimental data on polystyrene melts of various chain lengths. Extrapolation of this fit
yields a model for the crossover to entanglement. The need for additional experiments detailing the crossover
to the entangled state is pointed o81063-651X98)14809-2

PACS numbegs): 61.41+e, 83.10.Nn

I. INTRODUCTION self-assembly and utilized renormalization group ideas to

While it has long been known that entanglement in ho_study the onset of self-assembly in diblock copolymers. In

mopolymers has an important effect on its strength, a thOI’EhIS paper we shall pursue a similar continuum approach to
understand entanglement.

oughly satisfactory theory of polymer entanglement is still a Intuitively, one can see that entanglement could be de-

topic of current research. The classic experimental work Ofscribed by assuming two extra terms in the Cahn-Hilliard

Moore_and Watsori1] showed that thg bulk- modulus of functional,[11] one of which is a nonlocal attractive term
cross-linked natural rubbers depends inversely on the avefqat gives rise to entanglement and the other is a soft-core
age chain lengthN.;) between cross-links in the system, and ¢4 repulsive term that arises from the fact that the strands
that end corrections become negligible as the total averaggynnot cut across each other. We connect the parameters that
molecular weightu gets very large. They pointed out the gppear in our theory to the underlying chain parameters with
analogy between chemical cross-linking and physical eng simple model. We have showsee Appendixhow such a
tanglement. Thus their work applies in a qualitative sense tunctional can be derived naturally using notions from gauge
entangled systems as well. Their work extended the earlietheory.
pioneering work of Flory and co-workefg,3]. The results derived from our continuum formulation will

Edwards developed the tube theory of the effect of enbe seen to be reminiscent of the chain-theory approaches of
tanglement on elastic moduli of homopolymers using deKassalis and Noolandil2] for flexible polymer networks,
Genne’s idea of reptatiof8]. This theory showed how en- and that of Kroy and Frey13] for semiflexible networks.
tanglement enhances the tensile modulus of a homopolymeFhey utilized a mean-field approach to locate the transition
He also developed a more detailed model of entangled rintp the state of entanglement. Our theory is also somewhat
polymers using notions from knot theo®]. The basic idea similar to the paper of Castillo and Goldb&t#], who use a
behind this theory is an analogy between certain mathemati#® field theory, coupled to the replica tri¢k the mean-field
cal invariants, describing intertwined loops, and magneti@pproximation of Deam and Edwardsl 5], to study the vul-
fields induced in wires by current-carrying loops. Prager andtanization transition.
Frisch[5] worked on this notion as well, as did Koniaris and ~ We shall utilize a field theoretic approach and go beyond
Muthukumar[6]. the Gaussian approximation in this paper to show that the

More recently, interest has turned towards computeonset of the state of entanglement is a crossover phenom-
simulations of polymer networks, involving various levels of enon, rather than a pure phase transition, in that the effective
molecular detail, to understand the effect of entanglement odiffusion constant goes to zero at the transition point, but the
the strength of homopolymers. As examples, we mention theorrelation length and the structure factor do not diverge. A
work of Termoniaet al.[7] and Biceranaet al.[8], who use  physical reason that fluctuations become important near the
phenomenological models of polymer networks to studyonset of the state of entanglement is that the average chain
their viscoelastic properties. Comparison with experimentalength between points of entanglement gets smaller, while in
data shows a varying degree of success, depending on tlaevulcanized polymer, the cross-links make the system in-
particular system studied. Holtet al.[9] use the more basic creasingly stiff. This underscores a difference between vul-
fluctuating bond theory to model a network of polyethylenecanization and entanglement: An entangled network of poly-
strands to show that entanglement leads to nonaffine disners is more dynamic than a vulcanized network. The mean-
placements under large tensile strains. field approximation is expected to be corr¢db] for the

In an earlier papef10] we developed a gauge theory of vulcanization transition.
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We have also computed the tensile modulus of the sysether without actually cutting across each other. The nonlo-
tem. Corresponding to the critical slowing down discussectal attractive term gives rise to entanglement since it causes
above, we find a crossover in the modulus to a regime oportions of the network within the screening distancé tt/
high values. Fits to available experimental data show howbe attracted to each other. Equatidhis the basic statement
the single parameter in our theory can be parametrized iof our theory. Note that the two terms we just discussed have
terms of the molecular weight of the system. Extrapolationsigns that are opposite those of corresponding terms in theo-
of the parametrization we have provided in this paper disties of self-assembly10]. The nonlocal attractive term in-
plays the crossover to the entangled state. The need for furokes the notion that entanglement of polymers must lead to
ther experiments detailing this crossover is pointed out.  knotty configurationg19]. This attractive term can be seen

intuitively to lead to the notion of trapping and, as such, is
II. A FIELD THEORY OF ENTANGLEMENT slightly similar in the literature to treatments of entanglement
that use Arrhenius-like rate theories to provide for the escape

The continuum mesoscale approach adopted in this papgf polymers from local entangled arrangements.
assumes that we have performed some spatial averaging of |, \what follows, we shall sey=a* and 8= \2a with
our polymeric system, so that therder parameteris the  ,2_2/2 A strong motivation for this choice of parameters

local concentration of the polymers. Our mesoscopic theoryg provided in the Appendix, where we use notions from

of entangl_ement in polymers is based on the intuitive notio auge theory to derive E@4), with the parameters having
that physical entanglement can be captured by a nonloc

i X e forms given above. Another explanation for such a
attraction between the polymers, which causes them to resypice is as follows. With our choices for the parameters,
main in proximity. There must be a balancing repulsive IocaIUeff in momentum space may be written as

energy term that says that the polymers cannot cut across

each other. The starting point of our mesoscale theory is an 4K

internal energy functional that is quadratic in the gradient of Uer= f ——c* (K[ — V2ak?

the local number concentration. For the moment, we will (27)

consider isolated systems, so that the quantity that is con-

2 2 A
served is the internal enerd%7]. We will shortly consider —V2ak?(1+ 2k @) Jc(K), ®)
entropy effects as well. Consider the following form for the
energy functional: where the carats indicate a Fourier transform. Thus we see

that the choices made for the parameters are equivalent to

B 3 generalizing the diffusion constag= y2a— \2a[1+ 1/(1
BUO_'BI Uo(c(s))d"s, S J2k?/a)], i.e., a nonlocal diffusion constant is obtained.
If we now extremize the functional, the Euler-Lagrange
1 equations can be written in conservative form as
B= T 2
V-1(s)=0,

_(g ac(s) dc(s) .
Buo(c(9)=| 5 s os 3

. . d%k - -
| s)=Vf—ex iK-S)[1+ 11+ V2k? @) ]c(k),
where repeated indices are summed ogés, a dimension- ( (2m)° P [ ( Jel

less coordinate variabld, is Boltzmann’'s constant is the (6)
temperature, and is the number concentration of the specie.

The local concentration is normalized by dividing by some wherer(§) can be interpreted in the conventional manner as
characteristic inverse volume. The constguig analogous to a mass current. The divergence-free nature of this current
a dimensionless diffusion constant. Such energy functionalmakes it clear that with our choice of parameters, our inter-
have been considered over many years as contributing to theal energy functional preserves number conservation. This is
total internal energy of both unary and binary mixtufg$].  quite appropriate, since the internal energy is the quantity
We will use this form as our starting point to suggest a morethat is conserved for isolated systems. For an arbitrary choice
complete energy functional: of parameters, the Euler-Lagrange equations have the form

V. r’(§)=source/sinkterms, indicating that number conser-

2
BU = BUy+ a_) J' d3s o(s)c(9) vation can be a problem.
2 While our choice of parameters may appear to be overly

, restrictive, it turns out to be sufficiently rich to provide a
YV o [ e, . EXP(—3]s—S]) Y P
- d°s | d°s’ ¢c(§) ————

. c(s), description of the onset of entanglement in polymers. We
|s—¢'| will not explore more general sets of parameters in this pa-
(4)  per.

Before we can compare our theory with experimental
where a?,v,8 are positive constants. The local repulsive data, we need to consider the fact that our system is not
term is indicative of the fact that polymers cannot cut acrosseally isolated and may be in contact with an energy reser-
each other. This is, in effect, a soft-core repulsion term, andoir, perhaps as it is acted on by mechanical forces in a stress
the softness arises because we are studying a homopolymexperiment. For a system in contact with an energy reservoir,
network at a mesoscale, where polymers may pass by eathe quantity that is conserved is the Helmholtz free energy
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[17] A=U4— ST, whereS s the entropy of the system. The
entropy of our system will be approximated in the conven-
tional mannef18]:

s
_EzdeS os) In[c(s)]. (7)

Note that we have ignored a term in the above expression

that is linear in the normalized concentration field. This term

can be absorbed into the definition of the usual Lagrange . »

multiplier constraint for number conservation. This addi-

tional constraint is necessary, over and above the consider- FIG. 1. (a) is a pictorial representation of the cubic termAn
ations that led to Eq5), because we are now considering the Each leg corresponds to a factor of the fieldThe intersection of
Helmholtz free energy rather than just the internal energy. Ifhe three legs symbolizes a factor of the coupling constant
the homogeneous mean-field approximation, the chemicaf 1/6. (b) is a pi.ctorial rgpresentation of the qugrtic termAn A
potential can be easily shown to be zero. We shall utilize thigactor of —1/12'is to be inserted at the intersection.
approximation to facilitate computations. This entropy term

provides the free energy with a single minimum. To furtherSO(k) is affected by the value of. As « decreases, the
ease computations, we shall expanih (c) in a power series  structure factor looks more diffuse. Thus, a decrease in
about the characteristic inverse voluie® (=1 in our di- signifies a shift to a state of higher entanglement as the con-
mensionless unijsretaining terms up to fourth order: centration of entanglement points increases.

Our results can be understood compactly in terms of the
parametera or, equivalently,g, which may be identified
with the self-diffusion coefficient of a polymer. As dictated
) ) _ o _ by the discussion in Sec. IV of the paper, where by compari-
This expansion yields one minimum, just as the exact eXson with data on various polymers, we find thata,
pression for the entropy. Consequently, we do not expectthis 5. M _+a, M2, where M, is the average molecular

. . n:
system to display a phase transition, but rather a crossovggeight of the system. The constants in this expression are

from an unen.tangled state to a state of entan_glement. Flna_ll)éuch thata(M,) decreases adl, increases. Let us now
we npte that in our present theory, entropy yields the crucial,sxe some more definitions, vi¥ is the average chain
S emerloma - conton e o sacae ey apEn, 1 SYSTage it dSnsyT oy i)
9 : _ gauge theory N, is the average chain length between consecutive points of
assembl){;o] where entr_opy did not play a dominant rolle. entanglement, the entangled chain number density
We define the two-point Green’s function as usual via = PN avogacr (120N), and the monomer number density
= pNavogadrd/ #0, With p as the mass density of polymer,
Navogadro the Avogadro’s number, angy, the molecular
weight of the monomerl is the length scale in our theory
and we shall take it to be=\E~ Y3 where\ is a parameter
taken to be (2/3)° since it leads to an expression for the
—B(Uer—ST) tensile modulus in the Gaussian approximation that agrees
with the standard Wall theory result in the limit of short
(entangleglstates. We shall use the lendtto scale all other
' lengths in the system. These ideas are slightly similar to
Stillinger's in another contex{20,21]. By choosing our
where #(1+c) is a step function that indicates a restriction length scale in this fashion, it allows us to see how higher
to physically acceptable values of the concentration. In pracerder corrections beyond the Gaussian approximation lead to
tice, we shall be restricting our attention to small deviationsan enhanced elastic modulus. In this manner we have at-

of ¢ from its average, so that the step function is implicitly tempted to relate our theory in an intimate fashion to the
accounted for during calculations. In the quadratic approxinotion of entanglement.
mation, the structure factor is

1 IIl. BEYOND THE GAUSSIAN APPROXIMATION
1+a'k*+a ?K°/(1+2k% o)’ ©

c2 ¢ c*
(1+c) In (1+c)~c+ > st )]

S(x,x")=lim;_ o[ 6% 83(x) 83(x')1Q[J],

where

Q[J]=f Dch(1+c) exp

—fd%xéqé

So(k)= We shall now use diagrammatic methods to go beyond

the Gaussian approximation to the structure function de-
wherea’ = \2a. Equation(9) displays a peak at the origin, scribed at the end of the previous section. The reason is to be
as one might expect from the fact that entanglement createshle to describe the crossover to a state of entanglement. As
blobs that are distributed at random within the system. Thealiscussed in the previous section, the onset of entanglement
width of the peak indicates an inverse of the correlationis not a phase transition, but simply a crossover.
length between the blobs. With this physical interpretation, Figures 1a) and 1b) show the basic vertices in our
Ja is a measure of the distance between concentration flu¢heory. The figure captions describe the Feynman rules that
tuations(i.e., between points of entanglementhe decay of go with these vertices. We shall compute only the first non-
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1
1+2a'k2—2k*+Kk%(2a’)

So(k)= (10

With this definition, the net contribution from diagrams
shown in Figs. 2a) and 3 is

xl x2 3
22ar3(@)=—{ 7] So(0). (11
M * 2 Figure 2b) yields ak-dependent contribution to the self-
energy:
(a) (b)
. d*k’
FIG. 2. (a) represents théadpolediagram, which is crucial in 2op(kK) = 2 —350(k )So(|k"—k])

our calculations(b) represents theetting sundiagram. Both(a) (2)
and (b) are second order contributions to the correlation function ~ Sa+ &g k2+O(k4) (12)
coming from the cubic interaction term; the first order corrections '
are null. where
vanishing terms that arise from each of these vertices. The
first order contribution of the cubic term is zero, which fol- da(a)~ —————,
lows from symmetry considerations. We have to go to the 128 M47ad?

second order in the cubic term to obtairta@polediagram,

which is nonvanishing as shown in Fig(a® It serves to 1 5
renormalize the correlation function in the long wavelength 6g(a)~ 172 (23/4 z—\2
limit. Figure 2b) is the othersetting sundiagram, which 256ma “«

comes from the second order contribution of the cubic term, . . .
. . where the integrals were performed by approximating the
It may be expanded in powers of its argumé&ntThe term g P Y app g

. . e denominator of the Gaussian Green'’s function by terms up to
proportional tok? helps to renormalize theiffusionconstant y P

d to diminish it Id t entanal O(k?), as this suffices to guarantee convergence of the inte-
g, and serves to diminish i, as oneé wou'd expect entang egrals, so that there is no sensitivity to the higher order terms
ment to. Figure 3 shows the conventiorialbble diagram

ing f first ord turbation th th th . neglected. We find that the contribution from B4l is
fommﬁ rom |rts oraer pelr. ur tﬁ lon eloiy W'f t? qqart;]c extremely small compared téa from Eq.(12). This is ba-
erm. 1t serves 1o renormalize the correlation function in esically what happens in the usual renormalization scheme,
long wavelength limit.

. . L where one eliminates terms such&g0) [when Eq.(9) is
I order to render the integrals in our theory finite n th.reeused to perform the calculatiohasing appropriate counter-
dimensions, we shall use the following regularization

scheme. We shall perform an expansion of the denominatdf'ms in the energy funf:tional. In fact, in .this S,Che'ﬁ@('k)

of the Gaussian structure factor in powerskofWe shall ~ d€cays quadratically witk, and the considerations used to
retain terms up t@(k®). This is essentially an expansion in obtal_nthH(13) automat|_cally obtain. hat th lized
inverse powers ofx. This expansion yields the requisite  VIth these expressions, we see that the renormalize

higher order terms in the denominators of the Green's funcY&/U€9r=9—4g of the diffusion constant decreasesas
. . - . . N decreased. As is discussed in Sec. Il, the nonlocal attractive
tion to render our integrals finite, while ensuring ti&(k)

. L term in our free energy was identified with the formation of
>0. This method has the advantage of retaining the corre %y

. ) Qnotty configurations, or clustergl9]. We will therefore
long-wavelength behavior, at the expense of high momenturnjentify gr With the dynamics of such clusters. Cluster dy-

behavior. This is acceptable since we do not expect OUfamics has been recently observed using state-of-the-art

e e et s comaapa[ oGRS by Stepank and Brof], g i zeo neat
metho)éiwof renormaligationuvia countt\;\lrlterms Ou\r/ sirl19Ie-: 0'-18' Note thatr decreases as we mcrea*stethe_average
particle Green’s function in the Gaussian apbroximation ischam_lengt_h. We thus see that as entanglement Increases, the
now taken 1o be effec_tlve diffusion constant decreases, anz_alpgousrm_]:al
slowing down. We are not aware of explicit experimental
observations regarding the dynamics of clusters, with which
gr has been identified, near the crossover threshold. This
effect is similar to the considerations of Kassalis and Nool-
andi[12], Kroy and Frey{13], and Broderixet al.[22], who
study the vulcanization transition in the mean-field approxi-
mation and find the diffusion constant going to zero as the
vulcanization transition is approached. They point out that
this result agrees with experimental results. Given the anal-
ogy between vulcanizatior(chemical cross-linking and
FIG. 3. This figure represents the one-ldbpbble contribution  physical entanglement, we believe this result should be ex-
from the quartic interaction term iA. perimentally observable in entangled systems as well. Bro-

, (13

x; x x,
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derix et al. obtainedgg— 0 linearly with the average concen- include higher orders of the strain tend@5]. APg is a
tration. We have obtained a more complicated dependenameasure of the change per unit volume of the energy of the
on the concentration. We find that=0.18 when the renor- system under strain. Analogous to a simple harmonic oscil-
malized diffusion constant goes to zero. One could estimattator, the force tensor that constrains the system from under-
a using results from Sec. IV on the tensile modulus of poly- =
mers and experimental values for polymeric elastic moduli
and then obtain a value for the criticAl* at which the
effective diffusion constant goes to zero.

going a strain€ is given by— 3kT~c:30(k=0)E:5. Thus, the
stresso required to produce this strain is

~
The origin of §g>0 can be traced back to the nonlocal 8= 3kT&$’ E=0)¢: 7‘3
attractive term inU.¢, defined in Eq.(4). This nonlocal ol )e:
attractive term, which we interpreted as giving rise to en- (16)

tanglement, is responsible for a physical signature of the on©ne may now readily write down the tensile modulus as
set of entanglement, witgr—O. 5
Ys=3KkTc. a7

IV. TENSILE MODULUS L .
This is identical to the well-known Wall theory result ob-

It is well known that the Wall theory result for the tensile tained in the limit of short(unentanglefl chains. And its
modulus, while yielding the correct trend, does not agreeorigin is purely entropic. Our goal is to go beyond this resuilt,
with experimental data on moduli by a large factor. Ed-and to do that, we shaliressthe bare propagatofy(k)

wards'’s application of de Gennes' reptation moBjl pro-  using the diagrams shown in Figs. 2 and 3. This immediately
vides an enhancement factor over Kuhn's result, and showgads to the renormalized resi:
conceptually how entanglement leads to an increase in the

stiffness of the homopolymer system. We will show in this 3kT~cSR(k=O)

section how to obtain a similar result in our continuum treat- Yo(a)= 1 (18)
ment. More importantly, we will show we can go further, R 3k-|-”é[ ]

and describe a crossover, as the mean chain length between 1-Z25a43(a)—da(a)

entanglements is decreased, to a regime where the tens'L|.(?1 first of th tions is similar to th nnection mad
modulus, instead of remaining fairly constant, begins to in- € first of these equations 1S simiiar to the connection made

crease extremely rapidly as a function of decreaslpg The between the structure factor in the long-wavelength limit and

reptation model is unable to accomplish tii§, since it theTt;]qu mOdIl:IUSfby IKL;kwootc:]andtGolcljbefgb;]]; tor 2
assumes that the system is already in the entangled state, ani € fresult of ploting Ihe entangiementractor

does not account for interchain interactions, beyond assum- r/Yg—1 as a function oke(N) is presented in Fig. 4.

ing a preformed tube. V\ée see_thoatzggeSeBhancngnt factor,dwhlcht_s {Iaurlgy lcon.:,;a_\nt
The Helmholtz free energy in the Gaussian approximatiorfi ovea=0. ;» DEQINS to Increase dramaticaly DElow this
T value of @=0.2008. As was discussed in Sec. Il, decreasing
is given by[23,24] X X X - ;
a is equivalent to increasinly, the average number of links
3 . 3 _ in a polymer. And increasinly is associated with increasing
Fo=— =kTVcSy(k=0)=— —kTch d3x Sp(x). entanglement.
2 2 :
(14) To see th_e connection between our_appr_oach and the un-
derlying chain parameters better, we identify the prefactor

We may represent a strained state of the system by tHe?(@) +1] by multiplying the Wall theory result with the
T . . enhancement obtained within the reptation mddg] i.e.,
transformatiorx— x’ = x+u(x) in the above equation. This

. . L0 . Z(a)+1=(Nb?/a?), whereb is the monomer length, aral

is possible becaus&(x) in the above equation represents thejs the diameter of the tube in the reptation model. This iden-
density-density correlation functiofc(r)c(r—x)), so that tification gives us a relation betweenand the parameters of
when the system is strained(r —x) in our theory shifts to  reptation theory. It also gives us a relation between our
c(f'—x'), wherer’=r+U(r). For the case of homoge- theory and the under_lylng chain parameters, such athe
average number of links, and., the average number of
inks between successive points of entanglement, Niz+

= (b?%/a?). In fact, we can provide such an analytic, approxi-
mate relation in the following manner. Based on numerical
estimates 05,(0), we findthat in the highly entangled state,
|sa(a)|>]2a+3(a)|. Then, using Eq(13), we immedi-

neous deformation, we shall takgx) = €-X, wheree is the
strain tensor. The strain is assumed to be volume preservin
so thatd®x=d3x’. Our approach is similar to that of Castillo
and Goldbarf14]. It is now easy to show, using a Taylor
series expansion, that the change in the presdere
—(0FINV)1\ is

ately obtain
3 . ~ _ -2/3
APg~ 5 kTESy(k=0)€apeysDapyst O(E), a(Ne,N)~x(1=Ne/N)~,
1 2/3
Dapys=(Bapys™ Baydps), (15) K=(W 2 W) - 19

where the subscrips denotes the Gaussian approximation. It should be noted that this particular scaling relation Eq.
As needed, we can consider the expansion of free energy {@9) holds only in the limit of highly entangled states. While
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0.1 0.2 0.3 0.4 0.

FIG. 4. This is a plot ofZ=Ygr/Y;—1 as a function ofx. Notice that the factor is virtually constant abowe-0.20, followed by a
dramatic increase below this value af Approximations employed in the calculation cause the entanglement factor to diverge at
~0.01. Remember, decreasingcorresponds to increasing entanglement.

we have denoted the explicit dependenceNgrandN sepa- tain a parametrization of as function of the molecular
rately, it should be noted th&{, itself depends on the chain weightM (= uoN) (see Table | and Fig.)5This parametri-
lengthN. More generally, the advantage of our theory is thatzation is consistent with the stress-strain data provided by
the enhancement factpZ(a(N))+ 1] can change continu- Biceranoet al. [8]. This parametrization is also consistent
ously from a value of unity in the unentangled state, to awith Eq. (19). Equation(19) implies that for very large mo-
fairly large number as the system becomes increasingly erecular weights@— «x~0.016 35. From Fig. 5, we see such
tangled. As discussed earlier, the reptation model on thgalues forae occurring at the high end of the range of mo-
other hand presupposes the formation of tube constraidécular weights. The parametrization depicted in Fig. 5 may
caused by polymer chains surrounding any given chain. Abe thought of as a power series expansion of (&6).
such it applies only in the highly entangled state. The crossover between the unentangled state and the en-
We introduced our theory in Sec. Il in a phenomenologi-tangled state appears to take place betwigp=113 000
cal fashion, and so the best way to establish the validity oand M,~60 000 as the plateau in the storage moduli mea-
our theory is to compare the results of our theory with ex-surements disappears somewhere between these two values
periment, the connection with the underlying chain param-of the molecular weight§27]. Unfortunately, this crossover
eters[Eq. (19)] notwithstanding. However, we are not aware is not described well by these data, as measurements in the
of experimental data on the elastic properties of entangledrossover region are unavailable. This could well be due to
polymers detailing in a precise manner the crossover to théhe critical slowing down that our theory predicts will occur
entangled state. during the crossovefsee Sec. I). As can be seen from
Nevertheless, we were able to find an experimental paper
by Onogi and co-worker27,28, which provides systematic 00185
viscoelastic data on amorphous polystyrene in the melt state
over a wide range of frequencies and molecular wei¢gmsl
having a low degree of polydispersityWe were able to 0.0180 |
obtain static shear moduli from the plateau moduli given in
this paper. The conventional assumption of incompressibility
then says that Young’s modulus is three times the size of the,
shear modulus. Armed with these data, we were able to ob-

. « Fitting to data from Onogi et al
least-squares fit

0.0175

TABLE |. Fitted values ofa obtained in comparison with ex-
perimental data from Onoggt al. [27] on amorphous polystyrene 0.0170 &
melts at 160 °C. Young’'s modulus is denoted Yy

Molecular weight Yexpt () a (fitted) 0.0165 . . ‘ .

1e+05 2e+05 3e+05 4e+05 5e+05 B6e+05
581 000 93 0.0166 M
513000 84 0.0167 FIG. 5. These dots are the valuesaofequired to achieve agree-
351000 66 0.0171 ment with experimental values of moduli of amorphous polystyrene
275000 65 0.0173 melts for a range of,,. The solid line indicates a least squares fit,
215000 62 0.0177 obtained usingr(M,)=a,+a;M,+a,M?, with a,=0.0189, and
167 000 56 0.0184 a;=—6.18<10 %, anda,=3.89x 10 1°. Caution should be exer-
113 000 106 0.0179 cised in using this expression to estimatéoo far from the range in

which the fit was made.
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APPENDIX

In this appendix, we shall show how to derive Hg),
along with the choice of parameters made in Sec. I, using

notions from gauge theory. Let us start with
FIG. 6. Plot of log Z] as a function of the molecular weight

M, . Notice thatZ begins to attain nontrivial values abowé, g\ dac(s) ac(s)
~5x10% The curve indicates the path of the crossover from an BUO(C(S)):(—)— —_—
unentangled state to an entangled state. 2] ds;  9s

(A1)

where the variables have been defined in Sec. Il. We will use

Table 1 and Fig. 5, the dat"’? develops noise at thellow 9”0.' %is form as our starting point to generate a more complete
the range of molecular weights. And this is consistent Wlthenergy functional using gauge invariance

the prediction of critical slowing down, since the system From Eq.(Al) we see thati, is invariant under global

takes very long to settle into a metastable state. Since we

have a crossover phenomenon, it is difficult to pinpoint atranslauons 0(s), i.e. underc(s) —c(s) +h, whereh is a

single value ofM,, at which the transition to the entangled constant. And the appropriate group to consider is The
state occurs. But based on Fig. 6, in which the logarithm ophysical origin 9f th|§_group can b_e .traced back to the fact
the enhancement factor has been plotted as a function pat the.qua}dran(:posmve, sem|—defln!t)eform of the energy
M, , we see that it starts to become appreciabt@) in the ensity is dictated by expanding the internal energy around a

neighborhood oM ,~50 000. The theory thus predicts that minimgm, ina Landau—lik? fashion. Physicrfllity 0f trans-
it is in this neighborhood that the crossover takes place. |[orrr'1at'|ons demands_tr’mu +Ce>0, yvherec 'denotes the
would be very interesting to see more experiments pergewatlon of the specie’s concentration from its average, and

formed in the future, say for amorphous polystyrene, withthat number conservation is guaranteed. These physical con-

M., in the range just discussed, to see if the path of thec,tralnts will be incorporated into the evaluation of the parti-

crossover agrees with that shown in Fig. 6. It is even moré'lor_l function, after gaﬁlg'”guo' In a m?nlr;erhsmnar to ap-
important to do such experiments to ascertain if the criticaP'yiNg gauge constraints in quantum field the¢QFT).

slowing down predicted in Sec. Ill does indeed occur. Our physical motivation for seeking local gauge invari-
ance undell is the same as that of Yang and M{[&9], and

in quantum electrodynamics, where one observes the invari-
ance of the noninteracting Lagrangian under certain global
transformations. One then demands covariance of the theory
We postulated an extension of the Cahn-Hilliard func-when these symmetry operations deoeal, i.e., when the
tional to describe entanglement in polymers. We extendedransformations are space-time dependent. A reason for this,
the Cahn-Hilliard functional with two terms. One is an at- as given by Yang and Mills, is that one can now freely in-
tractive nonlocal term that describes the effect of entangleterchange between the fields as one moves through space and
ment, and the other is a local repulsive term indicative oftime, while leaving the physics covariant. It is important to
excluded volume interactions. We showed in the Appendixote that gauge theory in QFT i@t a result of the fact that
how this extended functional can be derived using notionghe phase of the field is not measurable. In fact, Aharonov
from gauge theory. Using field theoretic techniques to gcand Bohm showed many years ago that the phase in quantum
beyond the Gaussian approximation, we showed that the ofmechanics is indeed observable. Local transformations under
set of entanglement is a crossover phenomenon, signaled By generate concentration fluctuations that arise from en-
the effective diffusion constant going to zero. We developedanglement.
a simple model to connect the single parameter in our theory Following Yang and Millg29], local gauge invariance of
with the parameters of the underlying chains by a comparity underT; motivates us to define new fieltts which have
son with available experimental data on amorphous polystyivariance properties appropriate Tg. We define a covari-
rene melts. A reasonable estimate for the critical partial chaiant derivatived/(ds;) — [ d/(ds;) +q7b;], wherer=d/(dc) is
concentration at which this crossover occurs was obtainedhe generator ofT{, q is a “charge,” or equivalently, a
While this is consistent with available data, further experi-coupling constant, and the fields are analogs of the mag-
ments to determine the details of this crossover were sugietic vector potential in electrodynamics. In our previous
gested, especially to ascertain if the critical slowing downtheory of self-assembly10], gauge fields arose from the
predicted in this paper does indeed occur. underlying covalent bonds between the two species in the

V. CONCLUSIONS
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system. In the present case, in which we wish to describ&r to contend with, so that the resulting functional is only
entanglement, the gauge fields are to be thought of as arisirguadratic and not quartic in tHefields.

purely from statistical considerations alone. On the other It is important to emphasize that the usual application of
hand, chemical cross-linking would provide a physical originthe Yang-Mills procedure in QFT implies the existence of
for the b fields in vulcanized systems. The energy functionalfundamental interactions. In our case, we are applying the
for theb fields is defined by Yang and Mills, via the minimal principle of local gauge invariance at theesoscaleConse-
prescription. With this, our original internal energy density isquently, we do not expect to discover any new fundamental

transformed into interactions by using gauge invariance. Rather, we interpret
the newb fields as yielding correlations between the concen-
Bug— Bu= Bug+ Buip+ Buyy , (A2)  tration fields. These correlations can also be thought of as

) ) ) ] effective interactions, which arise at the mesoscale from the
whereuj, refers to the interaction energy density, angh is  ynderlying electrostatic interactions between molecules.

the energy density associated yvith the Yang-MBIsfieIds_ The partition function we need to evaluate is now
alone. Equivalently, we may define the total energy function-

als associated with these energy densities:

BUo— BU=BUg+ BUjn+ BUyw , Q :JDC a(c)kg,spbk exp~A(Uot Uit Uym).

(A9)
where
Equation(A9) is a functional integral, where the step func-
Bui=J(c)-b(s)+f b(s)-b(s), (A3) tions denoted by imply that we must restrict integration to
positive semidefinite values of the fields. Since théelds
with appear only quadratically in the above functional, it is
. . straightforward to integrate over them and obtain an effec-
J(c)=gqVc, (A4) tive internal energy functional involving onky, upon using
Eq. (A8). The result is
7
f=|—]. (A5)
2 BUef=BUo+ BAU et

We need one more definition for completeness:

1
=BUgy+ ZJ' d3sf d3s’ Ji(c(9))

(1) [dby by [db; b\ B 6
Buvw=\2) \Gs, " a5\ o s )" 4 4O 1 ,
XNz dies)). (A10)
This equation can be cast into the following form: ss'

1 Note that in doing so, we have ignored an overall trivial
Buyy=— (5) b;V?2Db; . (A7) normalization constant that appears in the evaluation of the
partition functionQ’. This is permissible, since this factor
cancels during the evaluation of averages of observable
aﬂuantities.
To reveal the physics in this effective functional, we per-
m some straightforward algebra to write our result as

2 4
%)I d3s c(s)c(s)—(%)

exp(— \2a?/g|s—¢s
xfd%f d3s’ c(s) X «1g| D c

|s=s|

Equation(A7) is obtained via an integration by parts, in
the transverse gauge. Since we are dealing with an Abeli
gauge theory, it is permissible to insert this transverse gauge .
manually, without resorting to the formal machinery of Fad-
deev and Popov. Again using the transverse gauge and inte-
grating by parts, it is clear that BU 4= BUo+

e

f d3s ﬁc(§)-5(§)=—f d3s co(s)[V-b(s)]

(s"),

—i 3ca Un(a). Ao
0=i fd s Ve(s)-b(s). (A8) (ALD)
It is this crucial identity that allows us to get the precise formwhere a?=g2q?/2 (we shall use units in which=g1). Note
for Eq. (4), which we motivated in Sec. Il using an intuitive that U is quadratic, the generator @f making sure that
approach. It is the nature of tHe; group that permits this higher order terms do not appear in our functional. Equation
manipulation to go through successfully. In our earlier papefA11) is one of the main results of our paper, and provides a
[10], where we used th8O(2) group, such a manipulation deeper motivation for the model developed in Sec. Il on
would not have availed us any advantage. intuitive grounds. As discussed in section I, the form of Eq.
Note that we are utilizing a nonrelativistic version of the (A11l) guarantees number conservation. Equati@ll)
Yang-Mills procedure, since we are only concerned withshows that entanglement may be understood in the context of
time-independent problems. Furthermore, since we are cor mesoscopic gauge theory. Note that the two terms we just
cerned with translations ifi;, there is only a single genera- discussed have signs opposite those of corresponding terms
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in theories of self-assemb10]. We thus see that usinfy;  explicitly with entangled strands of polymers and provides a
instead of SO(2) in the previous theoryl10] has led to a static theory that yields, e.g., a renormalized expression for
qualitatively different theory. Finally, this approach providesthe radius of gyration. It would be interesting to see how
an alternative gauge theory of polymer entanglement thaBrereton’s theory could be generalized to include dynamics
the one given by Breretdr30]. In this paper, Brereton works as well.
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